Incertitudes de mesure

Fiche à conserver et à amener à chaque TP.

On note Δ la demi-étendue d'incertitude : pour une valeur mesurée x, il s'agit de dire qu'on est presque certain que la valeur réelle se situe entre $x - \Delta$ et $x + \Delta$. De manière générale, l'incertitude associée à une valeur mesurée possède plusieurs contributions :

- celle liée à la fabrication nécessairement imparfaite de l'instrument, $\Delta_{\text{instrument}}$;
- celle liée à l'opérateur (vous) qui manipule ou lit le résultat de manière imparfaite, $\Delta_{\text{opérateur}}$;
- parfois une contribution supplémentaire, Δ_{autre} .

La demi-étendue d'incertitude globale est alors :

$$\Delta = \sqrt{\Delta_{\rm instrument}^2 + \Delta_{\rm op\acute{e}rateur}^2 + \Delta_{\rm autre}^2}.$$

Si on pense que la valeur réelle est avec une probabilité uniforme entre $x-\Delta$ et $x+\Delta$, alors le lien entre demi-étendue d'incertitude (Δ) et incertitude-type ou écart-type (u) est donné par $u=\frac{\Delta}{\sqrt{3}}$.

Quelques exemples à compléter dans l'année :

Instrument	$\Delta_{ ext{instrument}}$	$\Delta_{ m op\'erateur}$	$\Delta_{ m autre}$
Règle, mètre ruban Exemple (TP n°) :	graduation		
Vernier Exemple (TP n°) :	graduation	oui	
Banc optique Exemple (TP n°) :	graduation		plage de nettetée
Appareil numérique Exemple du voltmètre (TP n°) :	lire notice	non	
Chronomètre Exemple (TP n°) :	négligeable	temps de réaction	
Fiole jaugée Exemple pour $V =$ (TP n°):	tolérance indiquée	oui	
Pipette jaugée Exemple pour $V =$ (TP n°):	tolérance indiquée	oui	
Burette graduée Exemple pour $V =$ (TP n°):	tolérance indiquée	lecture	repérage de l'équiva- lence

Mesures et incertitudes en CPGE

x Grandeur mesurée

Résultat d'une mesure

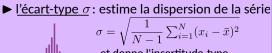
 $x_{\rm exp}$

 $u(x_{\rm exp})$

TANGEUR VALEUR obtenue EXPÉRIMENTALEMENT dernier CS de même rang que celui de $u(x_{\rm exp})$

INCERTITUDE-TYPE de la valeur mesurée écrite avec deux CS

Série de *N*mesures indépendantes



 $x_{\rm exp} = \overline{x}$

moyenne des valeurs obtenues

Évaluation par une approche statistique

 $\begin{array}{c} V = V N - 1 \stackrel{\sum_{i=1}^{n}(x_i)}{\text{et donne l'incertitude-type}} \\ \text{associée à } \underline{\text{une}} \text{ mesure} \end{array}$

► On réduit l'incertitude en prenant en compte toute la série.

$$u(\overline{x}) = \frac{\sigma}{\sqrt{N}}$$

Incertitude-type de la moyenne

diminue si le nombre N de mesures augmente

Mesure unique

 $x_{\rm exp} = x_{\rm mes}$

valeur
donnée par
l'instrument
de mesure

Évaluation par une approche non statistique

Incertitude-type de la valeur mesurée

- ▶ liée à la <u>demi-largeur de l'intervalle</u> on est presque certain de trouver la valeur recherchée dans l'intervalle $[x_{\rm mes} \Delta, x_{\rm mes} + \Delta]$ (estimation)
 - règle graduée au mm : $\Delta = 1 \, \mathrm{mm} \, \, \mathrm{ou} \, \, \, 0.5 \, \mathrm{mm}$
 - verrerie précise à $0.1 \,\mathrm{mL}$: $\Delta = 0.1 \,\mathrm{mL}$
 - etc... et attention à prendre en compte l'expérimentateur

Calcul

 $x_{\rm exp} = x_{\rm calc}$

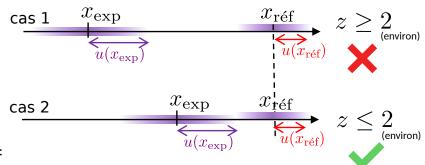
calculée à partir de valeurs mesurées

$u(x_{\rm calc})$

Incertitude-type composée

 $\blacktriangleright x_{\text{calc}} = x_1 \pm x_2 \implies u(x_{\text{calc}}) = \sqrt{u(x_1)^2 + u(x_2)^2}$

 $\blacktriangleright x_{
m calc} = a x_1 x_2 \text{ ou } a x_1 / x_2 \Longrightarrow \frac{u(x_{
m calc})}{x_{
m calc}} = \sqrt{\left(\frac{u(x_1)}{x_1}\right)^2 + \left(\frac{u(x_2)}{x_2}\right)^2}$


➤ autre formule : méthode Monte-Carlo

Comparaison à une valeur de référence $x_{\mathrm{réf}}$

Estimation de l'écart rapporté à l'incertitude :

$$z = \frac{|x_{\rm exp} - x_{\rm réf}|}{\sqrt{u(x_{\rm exp})^2 + \underline{u(x_{\rm réf})^2}}}$$

parfois inconnue ou négligée : prendre alors 0.

<u>@080</u>